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Abstract. The production and evaluation of the Analysis Ready and Cloud Optimized (ARCO) data cube for continental Eu-

rope (including Ukraine, the UK, and Turkey), derived from the Landsat Analysis Ready Data version 2 (ARD V2) produced

by Global Land Analysis and Discovery team (GLAD) and covering the period from 2000 to 2022 is described. The data cube

consists of 17TB of data at a 30–meter resolution and includes bimonthly, annual, and long-term spectral indices on various

thematic topics, including: surface reflectance bands, Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegeta-5

tion Index (SAVI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Normalized Difference Snow Index

(NDSI), Normalized Difference Water Index (NDWI), Normalized Difference Tillage Index (NDTI), minimum Normalized

Difference Tillage Index (minNDTI), Bare Soil Fraction (BSF), Number of Seasons (NOS), and Crop Duration Ratio (CDR).

The data cube was developed with the intention of providing a comprehensive feature space for environmental modeling and

soil, vegetation, and land cover mapping. To evaluate its effectiveness for this purpose, the quality of the produced time series10

was assessed by: (1) visual examination for artifacts and inconsistencies, (2) plausibility checks with ground survey data, and

(3) predictive modeling tests, examples with soil organic carbon (SOC) and land cover (LC) classification. The results of vi-

sual examination indicate that the gap-filled product is complete and consistent, except for winter periods in northern latitudes

and high-altitude areas where high cloud and snow density make gap-filling complex, and hence many artifacts remain. The

plausibility results further show that the indices effectively help differentiate landscapes and crop types: the BSF index showed15

a strong negative correlation (-0.73) with crop coverage data, effectively detecting soil exposure. The minNDTI index had

a moderate positive correlation (0.57) with the Eurostat tillage practices survey data, indicating valuable information on the

intensity of the tillage. The detailed temporal resolution and long-term characteristics provided by different tiers of predictors

in this data cube proved to be important for both soil organic carbon regression and LC classification experiments based on the

60,723 LUCAS observations: long-term characteristics (tier 4) were particularly valuable for predictive mapping of SOC and20

LC coming on the top of variable importance assessment. Crop-specific indices (NOS and CDR) provided limited value for

the tested applications, possibly due to noise or insufficient quantification methods. The data cube is made available under a

CC-BY license and will be continuously updated.
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1 Introduction

Earth Observation (EO) data is increasingly recognized for its critical role in environmental sciences (Kansakar and Hossain,

2016; Salcedo-Sanz et al., 2020). Compared to traditional field surveys, it offers high-resolution, large-scale, and recurrent

spatial environmental data at relatively low cost. These capabilities are important for comprehensive environmental studies,

ongoing monitoring, and effective management (Chatenoux et al., 2021; Giuliani et al., 2021). EO data not only offer valuable5

insights into the Earth’s surface through various spectral bands but can also highlight specific land surface features through

spectral indices derived by processing them. In addition, satellite data serve as an essential input for various models that study

physical processes, forecast future scenarios, and inform policy- and decision makers (Salcedo-Sanz et al., 2020).

As EO technology develops, more opportunities emerge. The development of a wider range of spectral indices allows a

more detailed analysis using different combinations of satellite bands (Montero et al., 2023). Improvements in spatial and10

temporal resolutions enable more detailed observations. In addition, a longer record of satellite imagery facilitates long-term

environmental studies. These advances help us better understand the environmental dynamics and enhance natural resource

management strategies. However, they also introduce new challenges. One of the key challenges to fully unlock the potential

of EO data for environmental applications, as highlighted by numerous researchers (Killough, 2018; Wagemann et al., 2021;

Giuliani et al., 2021; Chatenoux et al., 2021; Montero et al., 2023), is the gap between the demand for detailed EO data and15

the limited processing capabilities of most users. As the volume of EO data and the complexity of spectral indices increase,

processing typically requires specialized expertise and costly computational resources, both locally and in the cloud. For

example, while platforms such as MODIS, Landsat, and Sentinel openly provide valuable satellite data, these data often require

preprocessing to remove poor quality pixels, such as those affected by cloud cover and geometric distortions (Wulder et al.,

2022; Radeloff et al., 2024). While many pre-processed layers are available, they tend to be scattered across various data portals20

and often focus on limited themes. Accessing these ready-to-use datasets usually demands domain-specific knowledge to even

be aware of their existence. In addition, non-standardized data formats further complicate the ability of users to integrate these

data sets for specific applications (Wagemann et al., 2021). Thus, there is an essential need for solutions that ensure easy access

to open environmental data. Furthermore, these solutions should also facilitate the easy integration of these data, enabling its

combined use to effectively address critical environmental and economic challenges (Giuliani et al., 2017).25

Numerous platforms have emerged in the last decade that aim to make the management, processing and analysis of big EO

data operational, including Google Earth Engine (GEE, Gorelick et al., 2017), Sentinel Hub (SH, https://www.sentinel-hub.

com/), Open Data Cube (ODC, https://www.opendatacube.org/), Copernicus Data Spac Ecosystem (https://dataspace.copernicus.

eu/), and openEO Cloud (https://openeo.cloud/). Each platform has its strengths and weaknesses: GEE offers extensive datasets

and robust processing, but is limited by its closed nature, restricting external contributions and governance. Sentinel Hub faces30

similar limitations. OpenEO provides flexibility with user-defined functions but lacks guaranteed compatibility across differ-

ent back-end systems. Among these, the Open Data Cube (ODC) stands out for its open-source nature, flexibility, and strong

community support, making it a leading option (Gomes et al., 2020). As a result, many analysis-ready data (ARD) cubes have

been developed using ODC principles. ARD refers to a multidimensional time series stack of spatially aligned pixels that are
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ready for analysis, eliminating the need for additional data harmonization (Giuliani et al., 2017, 2021). These efforts reduce

technical complexity and have been shown to be effective in delivering information efficiently, as demonstrated by successful

implementations in various domains, such as vegetation dynamics (Obuchowicz et al., 2023), snow cover (Poussin et al., 2023),

and drying trend (Poussin et al., 2021).

EcoDataCube.eu, developed by Witjes et al. (2023), is the first product to cover the entire EU with a sufficient temporal5

range to support a long-term analysis of land degradation and land use change dynamics. This work extends the concept of

ARD to ARCO (analysis-ready and cloud-optimized) data cubes (Stern et al., 2022; Iosifescu Enescu et al., 2021), which helps

to optimize cloud-based data management and processing. Cloud optimization allows for on-the-fly access, reduces latency

through partial and parallel reads, and efficient metadata handling. Cloud-Optimized GeoTIFF (COG, https://www.cogeo.org/),

adopted by EcoDataCube.eu, is a good example of such a format. COG files are structured to facilitate network access through10

HTTP range requests, ensuring compatibility with cloud object storage systems. This design supports integration with high-

level analysis libraries and distributed frameworks. Additionally, EcoDataCube.eu also minimizes data gaps caused by clouds,

which cover approximately 67 % of the Earth’s surface and is a major obstacle to unlocking the potential of EO data (Baumann,

2024). This is achieved through time-reconstruction algorithms to ensure optimal cloud-free conditions (Zhou et al., 2016;

Consoli et al., 2024). This approach not only prepares the data for spatio-temporal analysis but also proves beneficial for15

modeling, as models typically require complete input data to function effectively.

Despite the valuable insights provided by EcoDataCube.eu, it is limited to quarterly temporal resolution and only raw bands.

To further reduce the burden on end users and increase the use and impact of EO data, we developed the ARCO data cube

for the EU by refining the temporal resolution, processing reflectance bands to derive spectral indices, and updating the data

layers until 2022. Our Landsat-based spectral indices data cube spans from 2000 to 2022, covering the pan-European area,20

including Ukraine, the UK, and Turkey, with data at a detailed 30m resolution. Using the Global Land Analysis and Discovery

team (GLAD) Landsat Analysis Ready Dataset version 2 (ARD V2) presented by Potapov et al. (2020) as input, we adopt the

state-of-the-art approach of Consoli et al. (2024) to generate four tiers of environmental predictors:

1. Bimonthly aggregated cloud-optimized bands;

2. Bimonthly spectral indices derived from bands;25

3. Annual indices derived by analyzing the bimonthly time series of indices;

4. Long-term indices reflecting features across two decades.

The foundational tier of the data cube consists of bimonthly cloud-optimized bands, derived using time reconstruction

methods to address the gaps left by cloudy pixels (Consoli et al., 2024). Building upon this, we calculate bimonthly spectral

indices as the second tier of predictors. This selection includes the most widely used indices, covering key aspects such as30

vegetation, crops, soil, and water (Montero et al., 2023): the Normalized Difference Vegetation Index (NDVI) is used to evaluate

vegetation health and biomass. Complementing NDVI, the Soil Adjusted Vegetation Index (SAVI) has been shown to be more

effective in areas with sparse vegetation by minimizing the impact of soil brightness on vegetation sensing (Huete, 1988;
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Rhyma et al., 2020; Reddy et al., 2022). Additionally, the Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)

provides a more direct measurement of plant productivity (Myneni and Williams, 1994). The Normalized Difference Water

Index (NDWI), also known as the Normalized Difference Moisture Index (NDMI), provides insights into water dynamics and

climatic characteristics (Gao, 1996). The Normalized Difference Snow Index (NDSI) helps identify snowy areas (Salomonson

and Appel, 2006). The Normalized Difference Tillage Index (NDTI), also known as Normalized Burn Ratio 2 (NBR2), shows5

potential in tillage detection, post-fire recovery studies and soil sealing identification (Zheng et al., 2012; Daughtry et al., 2010;

Eskandari et al., 2016; Beeson et al., 2020; Sonmez and Slater, 2016; Storey et al., 2016; Ettehadi Osgouei et al., 2019; Xiang

et al., 2022).

Through time series analysis, we also derive several annual indices that capture temporal patterns within the year as our

third tier of predictors. This includes the Number of Seasons (NOS) and Crop Duration Ratio (CDR) from NDVI time series,10

which shed light on the intensity of cropland use (Siebert et al., 2010; Li et al., 2014; Patel and Oza, 2014; Estel et al., 2016).

The Bare Soil Fraction (BSF) measures the duration of soil exposure, which is related to soil health (Demattê et al., 2020;

Mzid et al., 2021; Sharma et al., 2018; Turmel et al., 2015). Although NDTI is positively correlated with the crop residue cover

ratio (CRC), using it to distinguish between conventional, conservative, and zero tillage practices can be challenging without

knowing the specific timing of tillage or planting (Zheng et al., 2012, 2013). Therefore, its annual derivation, minimum NDTI15

(minNDTI), is adopted as a proxy for tillage due to its ease of application (Zheng et al., 2012). We also calculate annual

percentile aggregations (25th, 50th and 75th) of NDVI and NDWI to quantify annual vegetation and water conditions. Finally,

from these annual time series, we develop long-term indices that reveal decadal characteristics as the 4–tier predictors.

Given the comprehensive and extensive nature of this data cube, it is impractical to validate every derived spectral index

against ground truth data. Plausibility checks were conducted selectively, focusing on 3rd tier predictors where feasible and20

necessary, and where relevant ground data were available. These checks involved matching the data with the ground survey

statistics to highlight the advantages and limitations of the data. Our predictors data cube will be compared with EcoDat-

aCube.eu, which has been utilized for land cover (LC) classification by Witjes et al. (2023). By benchmarking against EcoDat-

aCube.eu, our aim is to highlight the improvements and advantages offered by our spectral indices data cube, specifically in

terms of accuracy, robustness, and usability for land cover classification. To demonstrate the versatility and utility of the data25

cube for various environmental modeling purposes, we also present a case study focused on building regression modeling for

soil organic carbon (SOC) using thid data cube. Finally, we discuss the recommended uses, limitations, and future development

of this data cube and compare it with other similar projects and initiatives. All the layers we produced are available under the

open data license CC-BY and can be accessed and visualized via our https://stac.ecodatacube.eu as Cloud-Optimized Geo-

TIFFs (Witjes et al., 2023). A copy of the data, including bimonthly reflectance bands, spectral indices, annual aggregations30

andlong-term analysis, is also available from Zenodo (Tian et al., 2024, https://doi.org/10.5281/zenodo.10776891); complete

code used to derive all indices is available via https://doi.org/10.5281/zenodo.12907281.
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2 Material and method

2.1 Landsat ARD V2

The data cube presented in this study is based on the Landsat Analysis Ready Dataset version 2 (ARD V2), developed by the

Global Land Analysis and Discovery (GLAD) team at the University of Maryland (Potapov et al., 2020). Landsat ARD V2,

the second version of Landsat ARD, consists of 16-day tiled composites with 23 images per year from 1997 to 2022, totaling5

598 images. It includes seven reflectance bands (blue, green, red, near-infrared, short-wave infrared 1, short-wave infrared 2

and thermal) and a detailed quality flag that classifies each pixel as land, water, cloud, cloud shadow, topographic shadow,

hill shade, snow, haze, cloud proximity, shadow proximity, other shadows, or buffered proximity of the previously mentioned

classes. These quality flags enable the identification of poor quality pixels, including those affected by clouds, cloud shadows,

haze, or other shadowy conditions. The presence of these gaps requires significant preprocessing before the data can be used10

for direct modeling and analysis. As one of the few globally consistent archives for historical time series of normalized surface

reflectances derived from various Landsat satellite collections, Landsat ARD V2 offers long-term availability (since 1997)

and detailed spatial resolution (30 meters). For this study, we cropped the global Landsat ARD V2 layers to a pan-European

extent, including Ukraine, the UK and Turkey. The GLAD ARD tile system is adopted to support data organization, parallel

processing, and spatial inference when necessary.15

2.2 SIRCLE framework and scikit-map

As a comprehensive framework for processing EO time series, Signal Imputation and Refinement with Convolution Leaded

Engine (SIRCLE) enables diverse time-series processing techniques by simply adjusting the convolution kernel (Consoli et al.,

2024). We adopted SIRCLE for temporal aggregation and gap-filling to impute data gaps created after removing clouds using

the ARD 2 quality assessment mask. This framework is implemented through the Python package scikit-map (https://github.20

com/openlandmap/scikit-map), which optimizes speed by leveraging data structures for parallel computing. In addition to

SIRCLE, scikit-map also offers straightforward capabilities for band operations, trend calculations, temporal statistics, parallel

raster reading and writing, and processing. These functionalities enable efficient processing, analysis, and visualization of large

multidimensional raster datasets. In this work, all data processing and map production were performed using scikit-map python

library.25

2.3 Spectral indices predictors data cube

2.3.1 First tier of predictors: bimonthly Landsat bands

The first tier predictors are ARCO land surface reflectance bands, gap filled from Landsat ARD V2 data. Using the quality

band, we created a good quality pixel mask to remove bad quality pixels, which leaves gaps in the time series. These gaps

are first reduced through temporal aggregation. From the 16-day interval time series, we derived a bimonthly product (i.e. one30

image per two months) using weighted temporal aggregation, where weights are assigned based on the clear sky fraction of the
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corresponding tiles. Since not all cloud-affected pixels are identified by the quality assessment mask, we defined the clear sky

fraction for each tile and date-stamp as the number of available pixels in each image, indicating cloudiness.

Percentage of unavailable 
values in the time-series

Figure 1. Per-pixel count of available value in the bimonthly aggregated Landsat time-series from 1997 to 2022. Darker areas are more

affected by presence of data-gaps in the time-series. In addition to cloud-presence and snow-cover, it is possible to notice patterns determined

by overlapping scenes in the original Landsat raw images. Adapted from Consoli et al. (2024).

We expect images with low clear sky fraction to have higher cloud contaminating also for available pixels, and for this reason,

lower weight is given to those values during the time aggregation. Even after bimonthly aggregation, there were still significant

gaps, as clearly visible in Fig. 1. The remaining gaps were filled using the Seasonally Weighted Average Generalization5

(SWAG) method in SIRCLE (Consoli et al., 2024). Compared to the Temporal Moving Window Median (TMWM) method

used by Witjes et al. (2023) to produce EcoDataCube.eu, the SWAG method offers advantages by simplifying parameterization

and improving computational efficiency. It achieves this by using weighted averages, where the weights differ by orders of

magnitude, thereby saving the need for iterative checks of data availability. SWAG reconstructs each pixel’s time series by

using a weighted average of images, prioritizing those from the same period in previous years, and only using past images.10
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As shown in step (1) of Fig. 2, the gap-filled images are then land-masked using the pan-European landmask (https://doi.

org/10.5281/zenodo.8171860) to exclude water bodies. These images are collected into global mosaics and stored as COG.

This bimonthly ARCO Landsat surface reflectance provides the fundamental material for producing spectral indices and their

derivatives.

2.3.2 Second tier of predictors: bimonthly spectral index5

The second tier of predictors is calculated per pixel using ARCO surface reflectance bands, as shown in step (2) of Fig. 2. Direct

satellite-derived indices make use of the unique spectral signatures of different objects on the surface of the land to detect their

presence within a pixel. Direct satellite-derived indices include Normalized Difference Vegetation Index (NDVI), Soil Adjusted

Vegetation Index (SAVI), Fraction of Absorbed Photosynthetically Active Radiation (FAPAR), Normalized Difference Tillage

Index (NDTI), Normalized Difference Water Index (NDWI), and Normalized Difference Snow Index (NDSI). The calculation10

formula we adopted is described in Table 1.

Table 1. Overview of third tier of predictors

Index Band Operation Reference

NDVI
nir− red
nir + red

Tucker (1979)

NDTI
swir1− swir2
swir1 + swir2

Van Deventer et al. (1997)

NDWI
nir− swir1
nir + swir1

Gao (1996)

NDSI
green− swir1
green + swir1

Salomonson and Appel (2006)

SAVI
(nir− red)

(nir + red +0.5)
× 1.5 Huete (1988)

FAPAR
(ndvi− 0.03)× (0.95− 0.001)

0.96− 0.03
+0.001 Robinson et al. (2018)
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Figure 2. General workflow for processing Landsat-based spectral index predictors. They formed four different tiers based on their level of

processing and different temporal resolutions through the workflow. The predictors could also be categorized into five thematic groups, each

framed by different colors in the figure, including vegetation, water, band-specific properties, crops, and soil characteristics. The “(3) Time

series analysis” in the workflow incorporates three different temporal operations: temporal aggregation, which extracts statistical measures

over specific periods to represent those intervals; trend analysis, which evaluates the directional changes of a predictor over time; and

cumulative analysis, which sum up the corresponding annual predictor values from a starting baseline year (i.e. 2000) to the specified index

year. Land-mask source: https://doi.org/10.5281/zenodo.8171860.
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2.3.3 Third tier of predictors: annual aggregated index

In step (3), the aggregated annual indices are derived by extracting key temporal features or statistics from the bimonthly index

series for each year. These indices are then provided at a 30m spatial resolution on an annual basis:

– Annual P25, P50, and P75 aggregation of NDVI, NDWI and NDTI are calculated by identifying the values at the

25th, 50th and 75th percentile of the sorted bimonthly NDVI and NDWI values for each pixel within a year.5

– Minimum Normalized Tillage Index (minNDTI) is determined as the minimum value of the six NDTI values over a

year (Zheng et al., 2012).

– Bare Soil Fraction (BSF) is calculated by dividing the number of pixels classified as bare surface within a year’s time

series (identified by the criterion of NDVI values below 0.35) by the total number of pixels analyzed in that year (Castaldi

et al., 2019).10

– Number of season (NOS) indicates the frequency of cropping cycles within a year, calculated by identifying peaks in

the NDVI time series (Li et al., 2014; Liu et al., 2020). Time steps with NDVI values greater than 0.5 are first flagged

as candidate peaks, possibly corresponding to an actual cropping cycle. A prominence filter of 0.25 ensures that each

candidate peak is at least 0.25 higher than its surrounding troughs, addressing consistently high NDVI values in areas

such as forests. Adjacent peaks with intervals shorter than 2 months are merged, keeping the one with higher NDVI15

values, to ensure an accurate representation of distinct cropping cycles.

– Crop Duration Ratio (CDR) quantifies the length of active cropping periods, calculated as the ratio of time during

which a pixel is in an active cropping state, defined as when the vegetation signals reach at least half the amplitude of

the phenological curve’s peak values (White et al., 1997). The peak values are determined by the average NDVI values

of the peaks identified during the calculation of NOS.20

– Accumulated NDVI P50, NDWI P50, NDVI of the month of July and August, and minNDTI The cumulative indices

are calculated by summing their values over time from the year 2000. They are expected to reflect the cumulative effects

of water content, vegetation health, and tillage practices on each pixel.

2.3.4 Fourth tier of predictors: long-term temporal feature index

In step (4), the indices that quantify long-term temporal features over 2000–2022 are calculated. The long-term changes trends25

are derived from annual aggregates to represent the changes from 2000 to 2022. For this, we adopted the Theil-Sen estimator

to fit the trend for 2000–2022. This is a statistical, non-parametric approach that is resistant to outliers, as it calculates the

median slope among all point-pairs (Theil, 1950; Sen, 1968). This results in trend maps for Bare Soil Fraction (BSF), NDVI

P50, NDWI P50, and minNDTI. Additionally, the P25, P50, and P75 percentiles of NDVI, NDWI, and BSF are derived for the

years 2000-2022 to provide a general overview of their distribution and general state over the this period.30
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2.4 Plausibility check

We focus on quality assessment efforts on the third tier of predictors—annual aggregated indices such as minNDTI, BSF, NOS,

CDR, since they represent more complex and less established measures compared to simpler spectral indices like NDVI and

NDWI.

2.4.1 Index statistics by crop type: BSF, NOS and CDR5

To examine the effectiveness of crop-specific parameters — BSF, NOS and CDR-in reflecting the crop patterns — we used the

harmonized LUCAS (Land Use and Cover Area frame Survey) data, which details crop types information at specific locations

and times (d’Andrimont et al., 2020). Three NUTS2 regions are selected to capture a diverse array of European agricultural

practices and climates: Picardy region (FRE2), Piedmont province (ITC1), and Malopolska Province (PL21). Picardy is chosen

for its temperate maritime climate and highly mechanized, large-scale farms. Piedmont is included to represent its unique damp10

rice paddies, which illustrate specialized crop cultivation. Malopolska offers insights into agriculture under a more continental

climate, contrasting with other regions. We identified points belonging to four predominantly grown crops in the selected

NUTS2 regions—FRE2, ITC1, and PL21 from the most recent LUCAS 2018 dataset. These points were then overlaid onto

the 2018 index maps for BSF, NOS and CDR, followed by the calculation of the statistics for crop-specific indices among

the different crop types. By comparing the statistics of these indices across regions and crops, we conducted an evaluation of15

the indices’ sensitivity and accuracy in capturing the distinctions in cropping patterns and reflecting the specific agricultural

dynamics.

2.4.2 Correlation with land survey data: BSF

We matched BSF maps against two land survey datasets, with approximately 150 records of crop cover duration from 2007

to 2016 on cropland (Edlinger et al., 2022, 2023). The hypothesis is that the proportion of time that crops cover the soil is20

inversely related to the presence of bare soil during the same time period. By implementing a correlation analysis between

BSF values derived from satellite data and ground-based measurements of crop cover duration, our objective was to assess the

reliability of the BSF in capturing the extent of bare soil across agricultural landscapes.

2.4.3 Correlation with regional statistics: minNDTI

To validate the minNDTI’s effectiveness in reflecting tillage practices across the EU, we compared it with Eurostat’s tillage25

area statistics (https://doi.org/10.2908/EF_MP_PRAC). Eurostat’s data originates from farm structure surveys conducted in 28

EU countries and is available in a vector shapefile format covering 319 NUTS2 regions, detailing arable areas under different

tillage practices. The breakdown of arable land area based on tillage practices is as follows:

∑
(TIL_CV + TIL_CSERV + TIL_ZERO + ARAXTIL) = ARA (1)
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where TIL_CV refers to areas under conventional tillage, TIL_CSERV refers to areas under conservation tillage, TIL_ZERO

refers to areas under zero tillage, ARA refers to total arable land areas, and ARAXTIL refers to areas land excluding from

tillage survey; all areas recorded in hectares. Notably, ARAXTIL represents land that is excluded from tillage survey due to not

being sown/cultivated during the reference year, which includes areas with multi-annual plants such as temporary grassland,

leguminous plants, industrial crops (hops or aromatic plants) etc. These are recorded in hectares and together make up the total5

arable land area (ARA).

To spatially match the Eurostats data with our predictor layers, the data preparation process involved four steps:

1. Calculate Tillage Shares: For valid NUTS2 data records with all four types of tillage practices, calculate the share of

each tillage practice within each NUTS2 region.

2. Crop Masking: Remove non-arable pixels from the minNDTI maps using the EU crop mask developed by d’Andrimont10

et al. (2021).

3. Spatial Overlay: Overlay the Eurostat survey data with crop-masked minNDTI map layers of matching years.

4. Calculate Average minNDTI: Calculate the average minNDTI value within each NUTS2 region.

The relationship between each tillage practice and minNDTI is assessed separately using Ordinary Least Squares (OLS)

regression models, correlating the shares of each tillage practice with the average minNDTI values within each NUTS2 region.15

To capture the collective impact of all tillage practices, we introduced the concept of Weighted Crop Residue Cover (WCRC).

This metric aggregates the influence of various tillage practices, considering minNDTI’s correlation with crop residue cover

(CRC):

WCRC =
∑

tillage types

(typical CRC value× area share) (2)

where WCRC integrates typical CRC values for each tillage type, weighted by their respective area shares within each NUTS220

region.

We fitted typical CRC values for each type of tillage practice, by setting reasonable ranges and selecting optimal values

that maximize the correlation between WCRC and minNDTI. According to Zheng et al. (2012), the CRC ranges are set as in

Table 2. For excluded tillage practices, we assume a broad range of 0 to 100 percent to cover all possibilities, reflecting the

uncertainty in its typical CRC values. The correlation analysis assesses the relationship between the estimated WCRC and the25

average minNDTI of the NUTS2 regions.

2.4.4 Visual examination

In addition to the quantitative assessment described above, we also visually reviewed the predictor maps produced. Some

zoomed-in examples will be presented in the Result section to illustrate how the indices vary across different land covers and

agricultural land. These visual representations complement the statistical analysis by highlighting spatial patterns that may30
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Table 2. Typical CRC value range for each tillage practice type

Tillage Practice Type CRC Range (%)

Conventional tillage 0–30

Conservation tillage 30–70

Zero tillage 70–100

Excluded tillage practices 0–100

not be evident through quantitative methods alone, providing an intuitive understanding of the spatial patterns of the indices.

Furthermore, the three NUTS2 regions chosen for our statistical analysis — FRE2, ITC1, and PL21 — are close to or partially

overlap with the zoomed-in example areas. This overlap enables a cross-check between the visual representations and the

statistical data derived from the crop indices.

For the long-term trend feature of BSF, NDVI, and NDWI, annual time series data for three LUCAS points were extracted5

from 2000 to 2022 within the zoomed-in example areas. Each has distinct dominant land covers and unique land dynamics

over the past decades. This provides detailed temporal information on the changes in land cover and agricultural practices of

these locations, enabling us to understand and illustrate how these indices capture and reflect change over time.

2.5 Comparison to EcoDataCube in LC classification

The Landsat-based predictor data cube are intended as an improvement of the version in the EcoDataCube (Witjes et al.,10

2023). The switch to a bimonthly temporal aggregation from a seasonal one with three percentiles leads to a smaller number

of variables (6 instead of 12) and a higher level of temporal resolution. In order to quantify the difference of these aggregation

techniques, we compare the performance of sets of random forest classifiers trained on both sets of Landsat data to predict

seven types of land cover: Cropland, Grassland, Bare land, Forest, Artificial land, Shrubland, and Wetlands. We exclude the

EcoDataCube non-Landsat data (DTM and Sentinel–2) and indices in this work to guarantee an objective comparison. Details15

about the training data will be discussed in the next section.

2.6 Modeling experiments

To demonstrate the utility of the indices in the data cube, we performed two modeling experiments: soil organic carbon (SOC)

regression and LC classification. The data points used for SOC regression and land cover classification come from the LUCAS

land cover and top soil surveys. Only surveyed point data (i.e. identified by unique point id and sampling year) with available20

both land cover and topsoil SOC data were selected for modeling experiments. Using stratified sampling, we select about 10

% of test data points based on a 30 km grid tiling system to ensure that the test data accurately represent the spatial distribution

throughout the study area. This results in 52.306 training data points and 8.417 test data points, in total 60.723 points.

The models’ performance for both tasks is evaluated by training them with different combinations of predictors, organized

into two main categories: themes and tiers. The first division categorizes the predictors by themes: reflectance bands, vege-25
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tation, water, soil, and crop (see Table 3). The second division organizes predictors by tiers, which represent different levels

of temporal aggregation and processing, as detailed in Sect. 2.3. These tiers, as described above, include bimonthly bands,

bimonthly indices, annual indices, and long-term indices. By systematically testing models with these combinations, we can

understand how indices developed for different purposes and how short-term variations, seasonal dynamics, and long-term

temporal features contribute to the accuracy and robustness of predictive models. Both SOC regression and land cover classi-5

fication models were trained using different groups from both divisions. We examined the feature space to identify the most

influential predictors and compared their importance between the regression and classification tasks. This analysis aimed to

highlight the flexibility and comprehensive nature of our data cube. Apart from comparing different feature combinations, we

also provide the top 20 most important features for the model trained on all predictors and all point data. This provides a

focused analysis that identifies which specific predictors are the most influential across the entire dataset when no subsets are10

used.

For the SOC regression experiment, we used the random forest (RF) as an estimator to predict the SOC content throughout

the EU. The target variable, SOC, was obtained from the LUCAS soil survey. We evaluated the performance of the regression

model using different combinations of predictors to identify which set provided the most accurate predictions. Performance

metrics used to assess model accuracy include R-squared (R2), which measures the proportion of variance explained by the15

model; Root Mean Squared Error (RMSE), quantifying the average magnitude of prediction errors; and Concordance Correla-

tion Coefficient (CCC), evaluating the agreement between observed and predicted values. We used a Random Forest regression

model with the following parameters: a maximum depth of 20 to control complexity, sqrt for max features to improve perfor-

mance, a minimum of 2 samples per leaf to prevent overfitting, a minimum of 5 samples per split for stable node splitting, and

800 estimators to ensure robust predictions. These parameters were selected through empirical testing and cross-validation,20

implemented using the scikit-learn library in Python. The metrics will also be calculated in the log1p space.

For the LC classification experiment, we employed a random forest classifier to predict LUCAS LC classes. Similarly to the

SOC regression, we tested the model’s performance with different combinations of predictors to determine the most effective

feature sets. Performance metrics used to evaluate the classification model include precision, assessing the accuracy of positive

identifications; recall, evaluating the model’s ability to capture all relevant cases; and F1-score, providing a balance between25

precision and recall for a comprehensive model assessment.

3 Result

3.1 Visual examination of third tier predictors

We visually inspect the tier-3 predictors for 2018, including NDVI P50, NDWI P50, BSF, NOS, and CDR, in three regions with

distinct features (Fig. 3): (A) an agricultural area in northern France, characterized by well-organized grid-like field patches30

of various crops; (B) a rice cultivation region that featured less regular field texture in northern Italy; and (C) the former

Szczakowa sand mine in southern Poland (Pietrzykowski and Krzaklewski, 2007; Pietrzykowski, 2008). These indices provide
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Table 3. Theme-Based Division of Predictors

Theme Predictors

Reflectance Bands Bimonthly Landsat bands

Annual P25, P50, and P75 of Landsat bands

Vegetation Bimonthly NDVI, SAVI, FAPAR

Annual NDVI P25, P50, and P75; acumulated NDVI P50 and

NDVI of the bimonth July and August

Long term P25, P50, P75 and trend of NDVI

Water Bimonthly NDWI, NDSI

Annual NDWI P25, P50, and P75

Long term P25, P50, P75 and trend OF NDWI

Soil Bimonthly NDTI

Annual minNDTI, NDTI P25, P50, and P75, and BSF

Long term P25, P50, P75 and trend of BSF, and long term trend

of minNDTI

Crop Annual NOS and CDR

an overview of vegetation health, moisture levels, bare soil exposure, number of growing seasons, and crop duration (see

Fig. 3).

NDVI and NDWI delineate agricultural patches with 30 m spatial resolution (Fig. 3-A). Forested areas show high values

of NDVI and NDWI, while urban areas (scattered towns in Fig. 3-A and Fig. 3-B) and exposed land from mining activities

(Fig. 3-C) exhibit low values. High NDWI values in region B, attributed to flooded paddy fields, do not always coincide with5

high NDVI (Ranghetti et al., 2016). For example, there are several patches in Fig. 3-B exhibiting high NDWI but moderate

NDVI values. This observation could be attributed to the paddy fields in region B, which are flooded in a controlled way to

meet the water demand of the rice plants (Ranghetti et al., 2016).

Although it was derived from the NDVI annual time series, the BSF shows different patterns. Urban and exposed soil areas

have high BSF values, while woodlands have low values. Despite lower NDVI P50 values, region B has lower BSF values10

due to stable NDVI levels above a threshold, indicating less bare soil exposure throughout the year. This highlights that BSF

reveals different aspects of the landscape compared to NDVI P50, making it a valuable complement to assess exposure to bare

soil and vegetation dynamics. The crop-specific NOS and CDR provide insights into growing seasons and their duration. CDR

highlights the duration for which crops occupy a pixel within a year and generally inversely relates to BSF. Most croplands

in regions A and B have a NOS value of 1, indicating a single annual growing season, while urban and forested areas have15

a NOS value of 0 (Fig. 3-C). Some areas show NOS values of 2, indicating possible practices such as winter cropping or

double-cropping systems.
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NDVI
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NDWI

SATELLITE
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A - France

BSF NOS

B - Italy

CDR

C - Poland

Saint-Quentin

Robbio

Mortara

Bukowno

Figure 3. Zoomed-in examples of NDVI and NDWI median in the year 2018 at (A) Northern France, with the city of Saint-Quentin at south-

east corner; (B) Northern Italy, in the western Po Valley, east of Vercelli; (C), Southern Poland, within the Przemsza River basin, featuring the

Szczakowa sand mine. Each image tile has a side length of 20km. Satellite imagery source: © Google Earth (https://earth.google.com/web/).
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3.2 Crop specific indices statistics across European regions

Fig. 4 shows the average values of BSF, NOS, and CDR for maize, sugar beet, rice, which are common crops in the NUTS2

regions PL21, FRE2, and ITC1, respectively. The NDVI time series for 2018, from which these indices are derived, are shown

in the bottom panel. Sugar beet in the FRE2 region has the highest average NOS value, due to its distinct NDVI time series

fluctuations, indicating pronounced seasonal variations. The NDVI time series for sugar beet shows a distinct peak during the5

summer months (July and August), a deep valley in March and April, and a less pronounced peak in winter. In comparison,

the NDVI time series for maize in the PL21 region and rice in the ITC1 region display more uniform patterns, with smaller

differences between peak and valley NDVI values, leading to lower NOS values. Sugar beet in the FRE2 region also exhibits

the highest BSF values due to a long and deep valley period in the NDVI time series. In contrast, rice in the ITC1 region shows

the lowest BSF values, reflecting its stable vegetation coverage throughout the year. Consequently, rice in the ITC1 region10

also has the highest CDR value. Although BSF and CDR often show a negative correlation, this is not always the case. For

example, sugar beet in the FRE2 region has a higher BSF compared to maize in the PL21 region but also has a higher CDR.

This highlights that, although related, BSF and CDR can differ due to their different focus: BSF measures the duration of bare

soil, whereas CDR emphasizes the active growing period.

Fig. 5 shifts the focus from different crop types across regions to the same crop type—common wheat—grown in the FRE2,15

PL21, and ITC1 regions. The average values of BSF, NOS, and CDR for common wheat reveal notable regional variations,

despite the NDVI time series overlap. Common wheat in the FRE2 region displays significantly higher NOS values compared

to the other two regions, due to a secondary growth peak in winter. It also has the highest CDR value, indicating the most active

growing cycles. In contrast, common wheat in the ITC1 region has the lowest BSF.

3.3 Assessing BSF in cropland20

An inverse correlation, as illustrated in Fig. 6, is evident between the recorded crop coverage data and the BSF values from

2007 to 2016 in the cropland. Given the complexities involved, including the varying temporal resolutions of observation, the

effects of crop residues, and the emergence of natural vegetation and weeds, a perfect one-to-one correlation between these

variables is not expected. This observed correlation, in line with our hypothesis, confirms the validity of the BSF data.

3.4 Compare minNDTI with Eurostat at NUTS2 level25

Fig. 7 shows the Pearson correlation between the shares of each individual type of tillage practice and their impact on the

minNDTI values. Although the correlation coefficients for all the tillage practices suggest only a moderate correlation between

the mean minNDTI values and the respective shares of each tillage practice, comparing the regression coefficients provides

valuable information about their relative impacts. The sensitivity of the average minNDTI to each tillage practice is represented

by the regression slope coefficient obtained from the OLS model fitting. Conventional tillage practices, characterized by soil30

inversion and minimal soil cover post-harvest, exhibit the most negative influence on average minNDTI in NUTS2 regions.

This is followed by conservation tillage practices. In contrast, zero-tillage practices, which minimize soil disturbance, show
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b. ITC1

FRE2-Sugar beet ITC1-Rice PL21-Maize

a. FRE2 c. PL21

Figure 4. Illustration of the locations of LUCAS 2018 survey points of selected crop types (top panel); statistics of various indices calculated

from these LUCAS 2018 points across crops in the selected regions (middle panel); and average NDVI dynamics for the year 2018, including

adjacent values from neighbouring years (bottom panel). The LUCAS 2018 points data are from 3 NUTS2 regions: (a) the central part of the

Picardy region (FRE2) in north France; (b) the western part of the Piedmont province (ITC1) in Italy; and (c) the Malopolska Province (PL21)

in southern Poland. These 3 regions are close to or partially overlap with the areas shown in Fig. 3, thus they are denoted with lowercase

letters instead of capital ones to show the difference and similarity. Satellite imagery source: © Google Earth (https://earth.google.com/web/).
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common wheat

b. ITC1a. FRE2 c. PL21

Figure 5. Illustration of the locations of LUCAS 2018 survey points of common wheat (top panel); statistics of various indices calculated

from these LUCAS 2018 points of common wheat across regions (middle panel); and average NDVI dynamics for the year 2018, including

adjacent values from neighbouring years (bottom panel). The LUCAS 2018 points data are from the same 3 NUTS2 regions as in Fig. 4.

Satellite imagery source: © Google Earth (https://earth.google.com/web/).
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Figure 6. Relationship between crop cover proportion and BSF from 2007 to 2016, depicted with an inverse correlation measured by

Pearson’s product moment correlation coefficient and coefficient of determination R2.

the most positive effect on the average minNDTI. The area excluded from the tillage practices analysis, denoted as “araxtil”,

consists mainly of multiannual plants, resulting in a positive impact on the average minNDTI as indicated by the sensitivity

analysis.

The correlation analysis between the WCRC and the average minNDTI of NUTS2 regions indicates that the cumulative

impact of all tillage practices on the average minNDTI is more significant than any individual practice (Fig. 8). The optimal5

CRC for the tillage practices excluded from the analysis is relatively high at 75.08 %, consistent with Eurostat’s statement that

the majority of land excluded from tillage practices comprises multi-annual plants.

To further illustrate the spatial distribution and temporal trends of minNDTI, we used the minNDTI map, masked by the

crop mask of d’Andrimont et al. (2021), to generate maps showing the average minNDTI for 2016 across the croplands of

each NUTS2 region. Furthermore, we created a map that illustrates the average minNDTI trend between 2000 and 2022 per10

NUTS2 region (Fig. 9). In 2016, NUTS2 regions in Scandinavia and Ireland exhibited high minNDTI values, in contrast

to regions in Spain and eastern Europe, which generally displayed lower minNDTI values on average. The trend map for

minNDTI reveals that NUTS2 regions around the Baltic Sea are experiencing a relatively strong negative trend, indicating a
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Figure 7. Relationship between individual share of tillage practices and average minNDTI of NUTS2 regions recorded in Eurostat. Each

point represents a NUTS2 region. Four types of tillage practices shown are TIL_CV: conventional tillage; TIL_CSERV: conservation tillage;

TIL_ZERO: zero tillage; ARAXTIL: land excluding from tillage survey. Coefficient refers to the Pearson correlation coefficient, quantifying

the linear correlation between two variables. Sensitivity measures how changes in tillage practices influence minNDTI, obtained as a regres-

sion slope coefficient from the OLS model fitting.

possible increase in the intensity of tillage. In contrast, areas in eastern Britain, the Netherlands and Austria exhibit a moderate

positive trend. In general, the European Union presents a negative trend in minNDTI. However, caution must be exercised

when interpreting minNDTI data, as the correlation between minNDTI values and tillage practices is not robust enough to

draw definitive conclusions without additional information.

3.5 Integrated trend analysis with land cover dynamics and indices time series5

Four trend maps were produced to analyze land surface trends between 2000 and 2022: NDVI annual median, NDWI annual

median, BSF, and minNDTI (Fig. 10). The NDVI trends reveal a positive trend in most parts of Europe. However, specific

regions, including the Alps, Northern Europe, northern Scotland, Iceland, and Scandinavia, exhibit clear negative NDVI trends.

These areas, characterized by high latitudes or altitudes, often experience persistent snow cover and frequent cloudiness. The
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Figure 8. Relationship between weighted crop residue cover (WCRC) and mean minNDTI values of NUTS2 regions recorded in Eurostat.

Each point stand for a NUTS2 region. Below the figure, the equation for calculating WCRC is presented, where the coefficients correspond

to the fitted CRC for each type of tillage practice. Four types of tillage practices considered are TIL_CV: conventional tillage; TIL_CSERV:

conservation tillage; TIL_ZERO: zero tillage; ARAXTIL: land excluding from tillage survey.

NDWI trend map for these regions shows a positive trend, indicating an increase in vegetation water content. In other parts

of Europe, the NDWI trends display a mix of positive and negative changes, lacking a definitive overall trend. The decreasing

trend in NDVI in regions of high altitude and high latitude is also reflected in the BSF trend map (Fig. 11). In Spain and Turkey,

strong positive and negative trends are scattered, with the positive trend being more dominant. Generally, our results show an

increase in minNDTI from 2000 to 2022 across Europe. However, there are exceptions, such as the negative trends observed in5

regions such as Turkey.

In Region A, Northern France, all BSF, NDVI, and NDWI trends show scattered increases and decreases, likely influenced

by well-planned crop patches and their varying management practices (Fig. 12). Most areas exhibit positive NDVI and NDWI

trends, except for urban areas such as Saint-Quentin city, where both vegetation and water content are declining. The time

series also shows significant variation, influenced by crop types and management practices.10

In Region B, northern Italy, the NDVI trends exhibit variability, but the overall trend is not as positive as in Region A

(Fig. 13). BSF generally remains stable, while some areas exhibit an increasing trend, indicating greater soil exposure. The
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Figure 9. Average minNDTI values in the year 2016 (left panel) and average minNDTI trend values (right panel) by NUTS2 regions.

dominant decline in NDWI highlights a drying trend, likely due to the increasing adoption of dry seeding practices in rice

cultivation (Ranghetti et al., 2016). The time series for the three indices has remained relatively stable over 20 years, reflecting

consistent rice cultivation practices.

Region C in Poland, which has transitioned from a sand mine to a reforested area (Pietrzykowski and Krzaklewski, 2007;

Pietrzykowski, 2008), shows the most significant positive trends in BSF, NDVI, and NDWI (Fig. 14). This indicates a steady5

increase in vegetation cover and water content, which is also reflected in the time series data. Although it was a coniferous

forest from 2009 to 2018, the increases in NDVI and NDWI, coupled with the decrease in BSF, are likely due to the continuous

growth of trees. Fig. 15 shows satellite images from 2000, 2010, and 2020, each accompanied by the corresponding BSF

images for comparison, clearly illustrating the progression of reforestation during the last two decades.

3.6 LC classification results compared to EcoDataCube.eu10

Both LC models achieved a weighted F1–score of 0.77, indicating similar performance. However, the model trained on this

Landsat-based predictor data cube (i.e. 6 bimonthly and 3 annual Landsat features per band) achieved a macro F1–score of

0.47, versus a macro F1-score of 0.45 for the model trained on Landsat bands from EcoDataCube.eu (i.e. 4 quarterly Landsat

data with 3 percentiles per quarter). This is mainly due to the higher classification accuracy for the relatively rare “wetlands”

class (202 points, see Fig. 16).15
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NDVI Trend

(per year)

(per year)

Figure 10. Long term changing trend between 2000–2022 of NDVI (top panel) and NDWI (bottom panel), as the annual rate of change in

index values.
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Figure 11. Long term changing trend between 2000–2022 of BSF (top panel) and minNDTI (bottom panel), as the annual rate of change in

index values.
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Figure 12. The top panel provides a zoomed-in view of NDVI, NDWI and BSF trends for Saint-Quentin region, north France (region A,

identical in spatial location and extent to region-A of Fig. 3), which has a consistent agricultural use with varies crop types across years.

Images generated by the authors using data produced in this study. Red crosses in the top panel mark the LUCAS point (ID: 38363000; lat:

49.91122N, lon: 3.237571E), detailed in the bottom panel. The bottom panel shows the time series of NDVI, NDWI, and BSF from 2000

to 2022 at this LUCAS point, which is revisited four times in the years 2009, 2012, 2015, and 2018, with the surveyed land cover indicated

beside yellow vertical lines.
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Figure 13. The top panel provides zoomed-in view of NDVI, NDWI and BSF trends for rural area besides city Vercelli in north Italy, with

dominant rice cultivation (region B, identical in spatial location and extent to region-B of Fig. 3). Images generated by the authors using

data produced in this study. Red crosses in the top panel mark the LUCAS point (ID = 42122479; lat=45.33338N, lon=8.611634E), detailed

in the bottom panel. The bottom panel shows the time series of NDVI, NDWI, and BSF from 2000 to 2022 at this LUCAS point, which is

revisited four times in the years 2009, 2012, 2015, and 2018, with the surveyed land cover indicated beside yellow vertical lines.
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Figure 14. The top panel provides zoomed-in view of NDVI, NDWI and BSF trends for the former Szczakowa sand mine, south Poland

(region C, identical in spatial location and extent to region-C of Fig. 3). Images generated by the authors using data produced in this study.

Red crosses in the top panel mark the LUCAS point, detailed in the bottom panel (ID=49923058; lat=50.24478N, lon=19.435963E). The

bottom panel shows the time series of NDVI, NDWI, and BSF from 2000 to 2022 at this LUCAS point, which is revisited four times in the

years 2009, 2012, 2015, and 2018, with the surveyed land cover indicated beside yellow vertical lines.
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Figure 15. Time series comparison showing zoomed-in satellite and BSF images of reforested post-sandmine areas near Bukowno town for

the years 2000, 2010, and 2020. On the top left are the BSF trend image, the black frame shows the zoomed-in area of which the satellite

and BSF images are shown. The top left image is the same as in Fig. 14. BSF images generated by the authors using data produced in this

study.The Composite Landsat ARD2 Image was generated by the authors using data from (Potapov et al., 2020), as described in Sect 2.1.
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Figure 16. Comparison of classification results between Landsat data aggregated to 4 quarters and 3 percentiles per quarter (EcoDataCube

Witjes et al. (2023)) and the data from this work, aggregated to 6 bimonthly variables per band, as well as 3 annual percentiles. Note that

overall accuracy was similar, except for the ‘Wetlands‘ class, which was classified more accurately by the model trained on the bimonthly

and annual data.

3.7 Feature importance analysis of SOC regression and LC classification

3.7.1 Examination across tiers

From Table 4, we see the performance of the SOC regression model evaluated using different combinations of predictors

categorized by tiers. When models are trained solely on one tier of predictors, tier 4 predictors (long-term characteristics)

outperform the other tiers across all three metrics. In contrast, tier 2 predictors (bimonthly spectral indices) show the least5

optimal CCC and R-square, while tier 1 predictors (bimonthly reflectance bands) have the least optimal RMSE. For models

trained on combinations of two tiers of predictors, the combination of tier 1 and tier 4 predictors performs best across all three

metrics, while the combination of tier 2 and tier 4 predictors performs the least well. When examining combinations of three

tiers of predictors, most metrics are quite close, but the combination of tier 1, tier 2, and tier 4 still stands out slightly. When

comparing across the number of tier sets combined, the general observation is that the more predictors combined, the better10

the model performed, with one exception: the model trained only on tier 4 predictors, despite being the smallest feature set,

surprisingly achieved the best performance across all combinations.

An examination of the model performance across different tiers, as shown in Fig. 17, reveals that including tier 1 and tier

2 features generally has a negative effect. In contrast, incorporating tier 3 and tier 4 features positively impacts performance.

Notably, tier 4 features show to have the most positive impact on model performance, consistent with the findings from Table 4.15

Unlike the SOC regression experiment, the LC classification experiment indicates that combining features from tier 1, tier

2, and tier 4 results in the highest accuracy (see Table 5). Although tier 4 is the best single-tier feature set for models in terms

of F1-score, precision, and recall, it does not outperform all possible feature combinations. Models utilizing tier 3 predictors

(annual spectral bands and indices) show the least optimal performance. For models using two-tier combinations, the pairing
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Table 4. Metrics for SOC regression using different combinations of predictor based on tiers.

Number of tiers combined Tiers Feature number CCC RMSE R2

1

tier1 42 0.635 0.651 0.489

tier2 36 0.623 0.660 0.476

tier3 38 0.637 0.652 0.487

tier4 13 0.682 0.613 0.547

2

tier1+tier2 78 0.647 0.642 0.503

tier1+tier3 80 0.648 0.642 0.503

tier1+tier4 55 0.661 0.630 0.521

tier2+tier3 74 0.648 0.643 0.501

tier2+tier4 49 0.644 0.643 0.502

tier3+tier4 51 0.659 0.634 0.516

3

tier1+tier2+tier3 116 0.652 0.639 0.507

tier1+tier2+tier4 91 0.664 0.629 0.523

tier1+tier3+tier4 93 0.663 0.630 0.522

tier2+tier3+tier4 87 0.662 0.631 0.520

4 (all predictors) tier1+tier2+tier3+tier4 129 0.665 0.629 0.523

True False
Using tier 1

0.48

0.49

0.50

0.51

0.52

0.53

0.54

0.55

R2

Tier 1: Bimonthly Landsat Bands

False True
Using tier 2

R2

Tier 2: Bimonthly Indices

False True
Using tier 3

R2

Tier 3: Annual Bands and Indices

False True
Using tier 4

R2

Tier 4: Long-term Trends

Figure 17. Accuracy comparison of SOC regression models trained on 15 combinations of 4 tiers of predictors.

of tier 1 and tier 4 yields the best results across all three metrics, followed by the combination of tier 2 and tier 4. When

examining models that incorporate three tiers, the combination of tier 1, tier 2, and tier 4 stands out, achieving the highest

F1-score, precision, and recall among all possible feature set combinations, even slightly outperforming the feature set with all

features.
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Table 5. Metrics for LC classification using different combinations of predictors based on tiers.

Number of tiers combined Tiers Feature number F1-score Precision (U.A.) Recall (P.A.)

1

tier1 42 0.769 0.776 0.784

tier2 36 0.776 0.781 0.789

tier3 38 0.761 0.762 0.773

tier4 13 0.785 0.782 0.791

2

tier1+tier2 78 0.782 0.787 0.794

tier1+tier3 80 0.774 0.777 0.787

tier1+tier4 55 0.785 0.792 0.799

tier2+tier3 74 0.777 0.781 0.790

tier2+tier4 49 0.785 0.791 0.797

tier3+tier4 51 0.775 0.777 0.787

3

tier1+tier2+tier3 116 0.779 0.783 0.792

tier1+tier2+tier4 91 0.790 0.796 0.802

tier1+tier3+tier4 93 0.782 0.785 0.795

tier2+tier3+tier4 87 0.784 0.788 0.796

4 (all predictors) tier1+tier2+tier3+tier4 129 0.786 0.789 0.798

Figure 18. Accuracy comparison of LC classification models trained on 15 combinations of 4 tiers of predictors.

Fig 18 shows that including tier 1 (bimonthly reflectance bands), tier 2 (bimonthly indices), and tier 4 (long-term character-

istics) all improve model performance. Similar to the SOC regression results, models incorporating long-term trends (tier 4)

exhibit the best performance metrics on average, while models including annual features tend to decrease model performance.
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Figure 19. Accuracy comparison of SOC regression models trained on 31 combinations of 5 themes of predictors.

3.7.2 Examination across themes

Table 6 presents the performance of the model for different combinations of predictors based on themes. When examining

models trained solely on one predictor theme, reflectance band predictors perform the best across all metrics, while crop

predictors perform the worst. It is important to note that crop predictors only include two variables: NOS and CDR. For

models trained with combinations from two themes, those involving band predictors generally perform much better than others,5

especially when combined with water and vegetation predictors. In contrast, the inclusion of crop predictors appears to degrade

the performance of the model. When three predictor themes are combined, the best performance is found with the combination

of band, soil, and water predictors, closely followed by combinations of band, soil, and vegetation, as well as band, water, and

vegetation. Models lacking band predictors but including crop predictors perform worse, which is also true for models trained

on four themes. Adding crop predictors to models that already include all other predictors does not significantly change the10

performance of the model. When comparing model performance across all possible theme-based combinations, it is evident

that crop predictors do not add value to the model and can even harm performance when insufficient other predictors are

available. In contrast, soil, vegetation, and water predictors all enhance the model, and the combination of these three themes

provides the most significant improvement in performance.

Fig. 19 shows the R-square comparison of using or not using features from a certain theme as input for the SOC regression15

model. Including more thematic groups of features almost always bring in added value, especially reflectance bands, except for

crop indices. The general performance patterns of the LC classification models, trained on different feature sets, resemble those

of the SOC regression models (see Table 7). For LC classification models trained on a single theme feature set, crop theme

features result in the worst metrics, while reflectance bands yield the best performance. Similarly to SOC regression, two-

theme combinations that include band theme features generally perform better. For three-theme combinations, the combination20

of band, soil, and water themes is the most effective. For models trained on combinations of four themes, the best performance

is observed when crop features are excluded. In particular, the model trained on the entire feature space achieved the highest

accuracy metrics, with a minimal difference to the model trained on all features except crop indices, specifically using the

combination of band, soil, vegetation and water themes (0.786331 versus 0.786330).
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Table 6. Metrics for SOC regression using different combinations of predictors based on themes.

Number of themes combined Feature combination Feature number CCC RMSE R2

1

band 63 0.635 0.652 0.488

crop 2 0.061 0.898 0.028

soil 17 0.582 0.690 0.426

vegetation 27 0.594 0.680 0.443

water 20 0.591 0.681 0.441

2

band+crop 65 0.636 0.651 0.489

band+soil 80 0.649 0.642 0.504

band+vegetation 90 0.651 0.639 0.508

band+water 83 0.651 0.639 0.508

crop+soil 19 0.581 0.691 0.425

crop+vegetation 29 0.593 0.680 0.442

crop+water 22 0.590 0.682 0.440

soil+vegetation 44 0.631 0.655 0.483

soil+water 37 0.626 0.658 0.479

vegetation+water 47 0.618 0.661 0.474

3

band+crop+soil 82 0.650 0.641 0.505

band+crop+vegetation 92 0.650 0.640 0.507

band+crop+water 85 0.651 0.639 0.507

band+soil+vegetation 107 0.659 0.634 0.516

band+soil+water 100 0.660 0.634 0.516

band+vegetation+water 110 0.658 0.634 0.516

crop+soil+vegetation 46 0.630 0.656 0.482

crop+soil+water 39 0.625 0.659 0.477

crop+vegetation+water 49 0.621 0.659 0.476

soil+vegetation+water 64 0.646 0.643 0.502

4

band+crop+soil+vegetation 109 0.660 0.634 0.516

band+crop+soil+water 102 0.660 0.633 0.517

band+crop+vegetation+water 112 0.657 0.634 0.516

band+soil+vegetation+water 127 0.666 0.628 0.524

crop+soil+vegetation+water 66 0.645 0.643 0.502

5 (all predictors) band+crop+soil+vegetation+water 129 0.666 0.628 0.524
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Table 7. Metrics for LC classification using different combinations of predictors based on themes.

Number of themes combined Themes Features F1-score Precision Recall

1

band 63 0.769 0.774 0.784

crop 2 0.288 0.308 0.458

soil 17 0.683 0.685 0.700

vegetation 27 0.741 0.744 0.756

water 20 0.724 0.727 0.739

2

band+crop 65 0.771 0.776 0.785

band+soil 80 0.778 0.783 0.792

band+vegetation 90 0.775 0.780 0.789

band+water 83 0.777 0.781 0.790

crop+soil 19 0.683 0.685 0.700

crop+vegetation 29 0.741 0.745 0.756

crop+water 22 0.725 0.730 0.741

soil+vegetation 44 0.762 0.764 0.775

soil+water 37 0.749 0.753 0.762

vegetation+water 47 0.769 0.773 0.781

3

band+crop+soil 82 0.778 0.784 0.792

band+crop+vegetation 92 0.774 0.780 0.788

band+crop+water 85 0.776 0.781 0.789

band+soil+vegetation 107 0.781 0.785 0.794

band+soil+water 100 0.784 0.788 0.797

band+vegetation+water 110 0.780 0.785 0.793

crop+soil+vegetation 46 0.760 0.763 0.773

crop+soil+water 39 0.747 0.751 0.761

crop+vegetation+water 49 0.769 0.774 0.782

soil+vegetation+water 64 0.779 0.782 0.791

4

band+crop+soil+vegetation 109 0.781 0.785 0.794

band+crop+soil+water 102 0.784 0.789 0.797

band+crop+vegetation+water 112 0.780 0.785 0.793

band+soil+vegetation+water 127 0.786 0.790 0.799

crop+soil+vegetation+water 66 0.778 0.782 0.791

5 (all predictors) band+crop+soil+vegetation+water 129 0.786 0.790 0.799
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Figure 20. Accuracy comparison of LC classification models trained on 31 combinations of 5 themes of predictors.

On average, models that incorporate Landsat bands achieved the highest F1-scores, while those including crop indices had

the lowest, as shown in Fig. 20. Including additional thematic predictors, in addition to crop indices, generally improved model

performance.

3.7.3 Comparison of feature space between SOC regression and LC classification

Comparing the results of the tier-based and theme-based for both SOC regression and LC classification, the improvement in5

model performance from combining more tiers is less significant than the enhancement seen when increasing the number of

combined themes. The contribution of features from different tiers varies between SOC regression and LC classification: in-

cluding tier 3 and tier 4 features improves the SOC regression model, while tier 3 is the only feature tier that decreases model

performance for LC classification. In both experiments, tier 4 demonstrates its importance. Regarding the feature examination

across themes, both experiments show similar results: reflectance bands provide a solid foundation for the models, and dif-10

ferent thematic features add valuable information. However, crop indices contribute very little and can even degrade model

performance when other variables are insufficient.

4 Discussion

4.1 Comparison to other open EO datasets

Our ARCO data cube, with almost 17TB of data for Europe at a 30 m spatial resolution from 2000 to 2022, represents a signif-15

icant improvement over existing pan-EU EO data sets in terms of completeness, consistency, and comprehensiveness. Through

an automated workflow, we ensured that all data layers adhere to uniform standards in naming conventions, projection systems,

spatial extents, and resolutions. This consistency allows users to easily combine layers over space and time, enabling detailed

studies using various indices. Our multidimensional index data cube, optimized as ARCO mosaics to be cloud-free and gap-

free, significantly reduces preprocessing efforts compared to using raw data from open data archives such as Sentinel (https://20

dataspace.copernicus.eu/explore-data/data-collections/sentinel-data), MODIS (https://modis.gsfc.nasa.gov/data/dataprod/), or
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Landsat (https://www.usgs.gov/products/data), which are freely provided by agencies like USGS, NASA, and the European

Commission’s Copernicus and Sentinel programs.

The concept of ARD has been applied in projects to manage multidimensional data cubes from remote sensing images for

specific countries and regions, such as the Australian Data Cube (Lewis et al., 2017), Swiss Data Cube (Giuliani et al., 2017),

and Africa Regional Data Cube (Killough, 2019). Although Witjes et al. (2023) offers the first pan-European data cube, it5

is limited to quarterly temporal resolution and only cloud-optimized reflectance bands. Our data cube extends this work by

refining the temporal resolution and developing four tiers of predictors. In addition to bimonthly indices that capture detailed

environmental dynamics, annual aggregations enable yearly comparisons, and long-term characteristics represent general states

and trends of vegetation, water, and crop management across Europe. This advancement benefits from two advantages of the

Landsat program, the world’s longest continuously running EO mission and detailed 30 m spatial resolution (Wulder et al.,10

2022). These indices complement ground survey data, which often lack temporal continuity and are limited in duration due to

the significant time and effort required.

Although some data sets provide continuous time series of spectral indices, they are often scattered and inconsistent in

format, resolution, and coverage (Wagemann et al., 2021). For instance, most reconstruction efforts focus on NDVI (Zhou

et al., 2016), while indices such as NOS, CDR, and BSF are less available (Estel et al., 2015, 2016; Ettehadi Osgouei et al.,15

2019; Demattê et al., 2020). Our data cube’s multidimensional nature provides comprehensive insights into various aspects.

The BSF index, for example, helps in crop management by mitigating soil exposure risks and revealing larger land use changes

such as deforestation (Demattê et al., 2020). Combined indices provide a holistic view, e.g. with NOS and CDR, along with

BSF, detailing crop cycles and identifying intensively cultivated areas (Estel et al., 2016). Coupled with climate and human

footprint data, these indices facilitate studies of the interactions between climate, human activities, and environments (Brown20

et al., 2012; Seifert and Lobell, 2015).

Although our Landsat indices data cube includes a broad spectrum of indices, it is less focused compared to dedicated studies

that aim to accurately quantify specific processes. Attempts to map bare soil often focus on identifying the barest pixel to map

the bare soil spectral reflectance composite (Diek et al., 2017; Rogge et al., 2018; Safanelli et al., 2020; Rizzo et al., 2023). This

approach encounters limitations due to permanent vegetation cover, which obscures any reliable detection of bare-earth spectra,25

thus resulting in incomplete coverage products with the highest-quality data for croplands and almost no data for forested areas

or permanent grasslands. For example, Rogge et al. (2018) developed a Soil Composite Processor (SCMaP) algorithm to map

bare soil spectra for Europe using both Landsat and Sentinel-2 imagery (Heiden et al., 2022), but this still leaves some 30–40

% pixels in the land mask without any data. Even outside croplands, the availabitlity of such products is still limited by cloud,

ice, and snow, resulting in large gaps (Hill and Guerschman, 2022). Diek et al. (2017) focuses only on mapping the barest pixel30

composite for agricultural areas. Although some studies suggest that soil bareness assessment could provide information on

soil conditions, avoiding data gaps caused by permanent vegetation, these are often regionally limited or suffer from a coarse

temporal resolution (Demattê et al., 2020; Mzid et al., 2021; Hill and Guerschman, 2022).

Many studies on Land Surface Phenology (LSP), i.e., the descriptors of spatio-temporal patterns of the vegetated land surface

derived from EO data (De Beurs and Henebry, 2005), present different methods to quantify crop cycles (Henebry and De Beurs,35
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2013; Estel et al., 2016; Liu et al., 2020; Meroni et al., 2021). Most LSP studies and products have moderate to coarse spatial

resolutions (Ganguly et al., 2010; Estel et al., 2016; Zhang et al., 2018; Caparros-Santiago et al., 2021), due to the trade-off

between spatial resolution and revisit frequency (Bolton et al., 2020; Meroni et al., 2021; Caparros-Santiago et al., 2021).

Although Sentinel-2 and Landsat-8 and their combination (Harmonized Landsat Sentinel) offer new opportunities to map LSP

indicators at fine spatial resolution (Bolton et al., 2020), HLS are only available from 2013 (in practice, true HLS is only5

available from 2015). Lastly, despite the potential to quantify the intensity of tillage with EO data such as Landsat-7/8/9 and

Sentinel-2, the availability of information on tillage practice on a continental scale remains limited.

In summary, the Landsat indices we described in this paper can be seen as part of a comprehensive effort to produce useful

biophysical indices to support soil, land, water and land use monitoring. Unlike dedicated studies that focus on accurately

quantifying specific processes, our data cube aims to provide a broad and versatile set of predictors that can be adapted to10

various environmental modeling and monitoring applications.

4.2 Implications from plausibility checks

Our quality assessment primarily focused on third and fourth-tier predictors, such as minNDTI, BSF, NOS, CDR and their

long-term trends, due to their complexity and the availability of relevant ground data. We also visualized the annual P50 of

NDVI and NDWI to provide basic information on general vegetation and water conditions. Visual examination indicated that15

annual NDVI, NDWI, and BSF effectively differentiate various landscapes, while NOS and CDR distinguish different crop

patches. Although interpreting these indices without detailed crop management information is challenging, regional statistics

of NOS, CDR, and BSF reveal significant differences in crop cycles among different crop types and regions across Europe. We

demonstrated that the BSF index effectively measures cropland bareness, with a high negative correlation coefficient of -0.73

with the duration of crop cover in agricultural areas between 2007 and 2016. However, the moderate correlation of minNDTI20

with tillage practices statistics from EUROSTAT suggests the need for further investigation.

In Fig. 10, a negative NDVI trend is observed in regions characterized by high altitude and latitude. This finding appears to be

in conflict with the greening phenomenon in cold / snowy ecosystems, as reported by Obuchowicz et al. (2023). Furthermore,

the positive trend observed in the NDWI trend map is inconsistent with Poussin et al. (2021)’s observation of a slight decline

in NDWI values in the Alps region of Switzerland during the period from 1984 to 2019. Several factors could be influencing25

these discrepancies, such as the different temporal scales used for trend calculation, as noted by de Jong and de Bruin (2012),

or the increased dependence on gap-filling due to limited available high-quality EO data in these regions. These contrasting

observations call for further investigation to understand the underlying causes and implications of them.

Although these efforts are limited by the availability of relevant ground data and sometimes yield inconclusive results, it is

important to note that these indices are proxies for ground objects and processes, rather than exact measurements of ground30

conditions. They are designed to complement, not replace, ground survey data. Therefore, plausibility checks are not expected

to provide one-to-one validation but to highlight the advantages and limitations of these indices. In summary, well-established

indices such as NDVI and NDWI, and the relatively straightforward BSF index, are reliable and suitable for direct analysis,
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as demonstrated in Sect. 3.5. However, for more complex indices like NOS and CDR, robust assessments require careful

integration with ground-truth data to ensure accuracy and validity.

4.3 Insights from modelling experiments

By looking at predictors of different themes’ impact on SOC regression and LC classification model, band theme predictors

are vital for both models. compared to predictors of other themes, they cover a broader range of surface objects and processes.5

In contrast, other themes focus on limited aspects. During training, the model can derive ‘pseudo-thematic features’ from these

broad-spectrum predictors. Apart from band theme predictors, models trained on single-theme predictors show that vegetation

theme predictors have more positive impact on both SOC and LC modeling than soil and water themes. When combining

two themes, vegetation and water predictors add a similar amount of information to SOC models, followed by soil predictors.

For the performance of the LC classification model using two-theme feature sets, soil contributes the most when combined10

with band predictors, followed by water and then vegetation. While band theme predictors provide a solid foundation for SOC

regression models, insights from predictors designed for different thematic purposes are necessary. Combining predictors from

more themes usually adds value than combining predictors from more tiers, except for crop theme predictors. The results

of both model experiments show that crop predictors are less valuable. This is not due to their small number, because they

negatively impact model performance when combined with other predictors. This implies two possibilities: 1. Information on15

crop cycles is irrelevant to SOC regression and LC classification, thus considered as noise by the model; 2. Our methods for

quantifying NOS and CDR are insufficient for accurately capturing crop cycles. Their current implementation and relevance to

SOC and LC modeling are limited; thus, further investigation and refinement are needed.

Unlike theme-based predictors, predictors of different tiers exhibit varying levels of importance for SOC regression model-

ing and LC classification modeling. For SOC regression, predictors that represent longer periods are more important. This is20

illustrated in Fig. 17, where predictors with extended temporal processing significantly enhance model performance. Across

all SOC regression models, model trained solely on tier 4 predictors (long-term characteristics) consistently outperform oth-

ers across all three metrics (see Table 4). This suggests that long-term characteristics are highly valuable for SOC regression

and can sometimes outperform more complex combinations of features. Dynamic information appears less beneficial for SOC

modeling, which is not surprising since SOC is a slow-changing soil property that typically varies over decades, whereas the25

LUCAS topsoil survey only covers nine years. The long-term temporal characteristics already provide the necessary infor-

mation to the model, and adding other dynamic information may decrease generalization ability, leading to overfitting issues.

In contrast, incorporating detailed dynamic information (tier 1 and tier 2: bimonthly bands and indices) improves the model

performance for LC classification. This improvement may be attributed to the dynamic nature of LC, which changes more

frequently or suddenly compared to SOC, making it better captured with more frequent revisit information. Surprisingly, the30

tier 3 (annual) indices are shown to be less important for LC classification. This could be because the temporal characteris-

tics within a year neither provide the detailed phenological information that bimonthly predictors do, nor offer the long-term

characteristics that tier 4 predictors provide. Therefore, tier 3 predictors do not capture the necessary details for effective LC

classification.
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Combining predictors from multiple themes generally adds more value than combining predictors from multiple tiers. This

is likely because different tiers mainly vary in their level of temporal feature engineering, conveying similar messages. In

contrast, predictors belonging to different themes, apart from the band theme, usually focus on limited aspects, making it

easier to overlook valuable information for the model. However, more predictors do not always lead to better performance. In

SOC regression, tier 4 predictors, consisting of 13 predictors, outperform all other possible feature sets and do not include any5

band theme predictors. This demonstrates that a smaller, well-selected set of predictors can be more effective than a larger,

less focused set. It also emphasizes the importance of strategic feature selection, which does not always equate to choosing

predictors with the highest feature importance. Furthermore, given the varying levels of improvement provided by different tier

predictors for different modeling tasks, it is crucial to conduct a thoughtful analysis and selection of predictors. This process

should be guided by a deep understanding of the predictors’ characteristics and the specific objectives and constraints of the10

modeling task.

4.4 Limitations

Although the reliability utility of indices has been demonstrated through our quality checks and modeling experiments, the

possibility that our preprocessing methods could produce invalid results in some areas still exists. Artifacts have been identified,

especially in regions such as central Sweden and southern Norway, as shown in Figs. 10 and 11. These artifacts arise from the15

reconstruction of time series using other images in the sequence, which can lead to inaccuracies if the time series contains

too few valid pixels (Consoli et al., 2024). This dependency can propagate errors, particularly in northern areas during winter,

when data gaps are frequent and gap-filling operations are extensive. Despite these issues, these artifacts do not significantly

impact the overall analysis but should be noted by users for careful consideration.

As with many Land Surface Phenology (LSP) studies, our temporally-aggregated indices such as BSF, NOS, and CDR rely20

on threshold-based methods (De Beurs and Henebry, 2010). These thresholds can vary depending on crop types and regional

characteristics, often requiring expert knowledge for accurate application, especially crop relevant indices (Chen et al., 2016).

Given the broad spatial and temporal scope of our data cube, we adopted a generalized threshold approach, which might not

capture local variations accurately (Henebry and De Beurs, 2013; Estel et al., 2016; Demattê et al., 2020). The limitation of

this method lies in its inability to distinguish between meaningful changes and natural fluctuations exceeding the threshold25

(De Beurs and Henebry, 2010). Therefore, users are advised to proceed cautiously and conduct preliminary tests when a

meaningful conclusion needs to be drawn from direct analysis with this limited local or domain knowledge.

Another challenge posed by advances in EO technology is the expanding list of satellite spectral indices, each uniquely

calibrated for specific environmental attributes. For example, the Awesome Spectral Index (ASI), developed by Montero et al.

(2023), lists 127 vegetation indices by its publication date. Incorporating all of these indices into a single data cube is imprac-30

tical. To balance data volume and complexity, we adopted a hybrid approach. The predictors data cube includes the indices

most commonly applied, covering several important aspects of the environment, such as vegetation health, soil conditions,

and water dynamics. Additionally, developed in alignment with the principles of the Open Data Cube (ODC), our ARCO data

cube includes guided documentation and scripts to assist users in querying, exploring, performing analyses, and tracking the
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provenance of all contained data. This approach facilitates quality control and updates, allowing users to customize the data

cube according to their specific needs or to explore new indices that could offer additional insight into the environment.

The data cube includes a wide array of indices with various applications. However, some indices may yield irrelevant

values outside their intended regions. For example, many indices lose significance in snowy environments at high latitudes and

altitudes, and minNDTI does not convey useful information about tillage practices outside of arable land. It is crucial not to5

apply these indices indiscriminately across all land covers. Other indices within the data cube can help delineate appropriate

application areas. For example, the NDSI can exclude snowy areas, ensuring a more accurate application of other indices.

4.5 Future work

While NOS and CDR provide useful insights into crop cycles and their duration, their limited contribution to SOC regression

models suggests a need for further refinement. Improving the methods for quantifying these indices or exploring alternative in-10

dicators might enhance their utility in SOC modeling. In addition, incorporating more localized and domain-specific knowledge

could help to tailor these indices to better capture relevant environmental processes.

Although the original Landsat archive has a 16-day temporal revisit, we aggregated the data set into a bimonthly resolution

to address quality issues such as gaps and cloudy pixels. Although bimonthly resolution effectively captures annual dynamics,

a finer 16-day resolution could provide richer details, especially for NDTI values observed from harvest windows crucial for15

mapping tillage practices (Zheng et al., 2012). However, finer temporal resolution requires extensive gap-filling, presenting a

significant trade-off between temporal detail and data consistency.

Our data set currently relies exclusively on Landsat ARD V2 to derive NOS, CDR, and minNDTI. However, integrating

multiple sensors could enhance accuracy (Henebry and De Beurs, 2013; Caparros-Santiago et al., 2021). For example, using

minimum surface temperature thresholds can prevent false crop cycle identifications (Li et al., 2014), and integrating pre-20

cipitation data can improve crop residue estimates (Beeson et al., 2020; Dvorakova et al., 2023). Furthermore, combining

Harmonized Landsat-Sentinel (HLS) data could further improve index usability, especially for years covered by Sentinel-2

(Wu et al., 2022).

As indicated by the survey results of Wagemann et al. (2021), improving the usability of spectral indices requires the

participation of various stakeholders, including farmers, policymakers, and sector-specific experts. Their local knowledge and25

domain-specific insight can refine algorithms and improve the utility of data. This approach aligns with the objectives of the

Horizon Europe AI4SoilHealth project (2023–2027), aiming to bridge the gap between EO data and practical applications.

5 Conclusions

In this paper, we present the production process and quality assessment of a 17TB ARCO data cube, primarily based on

the Landsat indices. It is available at a 30 m resolution from 2000 to 2022, comprising multiple spectral indices. Multi-tiers30

of preditors are derived to represent different levels of temporal information extraction: bimonthly, annual, and long-term

analyses covering continental Europe, including Ukraine, the UK, and Turkey. The main advantages of our dataset include: (1)
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its fine spatial resolution and extensive temporal coverage, which are crucial for analyzing and tracking the spatial variations

and temporal dynamics of different environmental aspects, such as soil; (2) its broad coverage of indices, each providing

unique insights into different aspects, together offering a holistic view of environment; (3) it is analysis-ready for modeling

and mapping applications.

To maximize the effectiveness and reliability of the data, the following usage recommendations are proposed:5

– Established Indices: For well-established indices like NDVI, NDWI, SAVI, FAPAR, NDSI, and those demonstrating

high reliability such as BSF, the data cube provides valuable information and insights, especially when ground truth data

are lacking.

– Complex Indices: For more complex indices that were not validated in this study due to the lack of corresponding

ground truth data, caution is advised. These should be used alongside ground truth data to ensure accuracy and validity,10

and their application should consider domain and local knowledge.

– Modeling: All indices in the data cube have proven effective as predictors for modeling purposes, making them useful

for various environmental and ecological models.

– Feature Selection: It is beneficial to perform feature selection to identify the best combinations of indices from the

comprehensive predictor sets for specific modeling tasks, optimizing the model’s performance and relevance to the15

study’s objectives.

6 Data availability

This dataset is registered on Zenodo with a valid DOI (Tian et al., 2024, https://doi.org/10.5281/zenodo.10776891). Because

of Zenodo’s storage limits, the data are stored in different buckets. To facilitate data access, we have set up a Zenodo landing

page that contains a navigation catalog with links to other data buckets. Although each bucket has its own corresponding DOI,20

to ensure consistency, please cite the DOI on the landing page, which represents all versions and will always resolve to the

latest one.

7 Code availability

Complete code used to derive all indices and generate the visualization figures is available at https://doi.org/10.5281/zenodo.

12907281. Even more spectral indices can be derived using the https://github.com/awesome-spectral-indices/ library provided25

by Montero et al. (2023).
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